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a b s t r a c t

In this paper the homotopy perturbation method is used for calculation of axial secular frequencies of a
nonlinear ion trap with only hexapole superposition. The motion of the ion in a rapidly oscillating field is
transformed to the motion in an effective potential. The equation of ion motion in the effective potential
is the equation of an anharmonic oscillator with quadratic nonlinearity. The homotopy perturbation
method is used for solving the resulted nonlinear equation and obtaining the expression for ion secular
frequency as a function of nonlinear field parameter. The calculated secular frequencies are compared
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with the results of L.–P. method and the exact results.
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. Introduction

The ion trajectories in a trap with perfect rotational symmetry
round the Z-axis can be derived analytically from the well-known
athieu differential equation [1]. In an ideal ion trap the potential

s pure quadrupole and the main properties of the movement of an
on are obtained by the solution of Mathieu equation.

In a practical ion trap, however, the electric field distribu-
ion deviates from linearity which is the characteristic of a pure
uadrupolar trap geometry. This deviation is caused by misalign-
ents, nonhyperbolic shapes, truncated electrodes, perforation in

he electrodes, space charge potential of a large ion cloud [2], addi-
ional dipolar excitation potential [2,3] and collisions within the
rap.

These nonlinear agents superimpose weak multipole fields (e.g.,
exapole, octapole, and higher order fields) and the resulting non-
inear field ion traps exhibit some effects which differ considerably
rom those of the linear field traps.

The equation governing the motion of the ion in the nonlin-
ar ion trap is the nonlinear Mathieu equation which can not be

∗ Tel.: +98 2182063351; fax: +98 2188221074.
E-mail address: Adoroudi@aeoi.org.ir.

387-3806/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2010.07.029
solved analytically. Many simulation studies [4–7] and experimen-
tal studies [8,9] have been done on the effects of nonlinear terms
in the nonlinear equation of motion. The superposition of weak
higher multipole fields changes the motions of ions compared to
their motions in a pure quadrupole ion trap; thus, it is the non-
linear resonances which dramatically and qualitatively change the
oscillation of ions in nonlinear traps.

Simulation studies have shown that the higher order terms
in the electric field make the ion secular frequency to shift with
respect to the value ωu = ˇu˝/2 (u = r or z). ωu is the ion secular
frequency in the radial and axial directions, ˝ is the RF drive fre-
quency applied to the central ring electrode and ˇu is a function of
Mathieu parameters au and qu [10,11].

Simulation studies [12] have shown that hexapole super-
position decreases the secular frequency, positive octopole
superposition increases the ion secular frequency and the neg-
ative octopole superposition decreases the secular frequency.
Experimentally, it has been shown that [13] the octopole and
hexapole superposition resulted in a decrease in ion secular

frequency.

Sevugarajan and Menon [14] have applied the
Lindstedt–Poincare technique for solving the nonlinear equa-
tion of ion motion in nonlinear ion trap and have obtained the
secular frequency shift as a function of the strength of hexapole

dx.doi.org/10.1016/j.ijms.2010.07.029
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
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nd octopole superposition. We use the results of this paper for
omparison with the results of the present work.

The exact solution for nonlinear equation of an anharmonic
scillator with quadratic nonlinearity and the exact expression for
ts period have been studied by some authors [15,16]. They have
ound the exact expression for the period of nonlinear oscillator
n terms of complete elliptic integrals. We have used the results
f these papers and have calculated the exact frequencies of an
nharmonic oscillator with quadratic nonlinearity. The mathemat-
ca software has been used for calculation of elliptic integrals.

In a previous paper [17] we have applied the homotopy per-
urbation method for solving the axial nonlinear equation of ion

otion by considering the hexapole and octopole fields superposi-
ion and have calculated the ion secular frequencies as a function
f nonlinear field parameters. In Ref. [17] for comparison purposes
e have ignored the hexapole superposition and have considered

nly the octopole field. With only octopole field superposition the
esulting nonlinear equation has a cubic nonlinearity and the equa-
ion is a Duffing-like equation. In this paper we consider only the
exapole field superposition and the resulting nonlinear equation
as a quadratic nonlinearity. We apply the same homotopy per-
urbation method for solving the nonlinear differential equation of
on motion with quadratic nonlinearity and calculate the ion secu-
ar frequencies. We compare the results of this paper with those
btained using Lindstedt–Poincare technique [14] and with the
xact results.

The outline of the paper is as follows: In Section 2 the homotopy
ethod is briefly introduced. In Section 3 the axial equation of ion
otion in a nonlinear ion trap is derived. In Section 4 the homotopy
ethod is applied to solve the nonlinear differential equation of

on motion in nonlinear ion trap. The results are also given in this
ection. Finally, the concluding remarks are given in Section 5.

. Homotopy method

The standard Lindstedt–Poincare method [18,19] is applicable
o equations like ẍ + ω2

0x + εf (x) = 0 which has a linear term (ω2
0x)

nd a small perturbation parameter (ε). This method cannot be
pplied to a system with a nonlinear differential equation unless
he nonlinear differential equation has both a linear term and a
mall parameter. In the homotopy perturbation method [20–25],
he nonlinear differential equation does not need to have either

linear term or a small parameter. The homotopy perturbation
ethod can solve various nonlinear equations. For illustration of

he basic idea of this method, we consider the following nonlinear
ifferential equation:

(u) − f (�r) = 0 �r ∈ ˝ (1)

ith boundary conditions:

(u,
∂u

∂n
) = 0 �r ∈ � (2)

here A is a general differential operator, B is a boundary operator,
(�r) is a known analytic function, and � is the boundary of the
omain ˝. We believe that the operator A can be divided into two
arts, a linear part (L) and a nonlinear part (N). Then the Eq. (1) can
e written as:

(u) + N(u) − f (�r) = 0 (3)

By the homotopy technique, we construct a homotopy v(�r, p) :
× [0, 1] → � which satisfies:
(v, p) = (1 − p)[L(u) − L(u0)] + p(A(v) − f (�r)) = 0 (4a)

r

(v, p) = L(v) − L(u0) + pL(u0) + p(N(v) − f (�r)) = 0 (4b)
s Spectrometry 296 (2010) 43–46

where p ∈ [0,1] is an embedding parameter, u0 is an initial approx-
imation of Eq. (1) which satisfies the boundary conditions.

From Eq. (4a) or (4b) we have:

H(v, 0) = L(v) − L(u0) = 0 (5)

and

H(v, 1) = A(v) − f (�r) = 0 (6)

It is clear that when p = 0, Eq. (4a) or (4b) becomes a linear
equation; and when p = 1 the equation transforms to the original
nonlinear equation. So the changing of p from 0 to 1 is just that of
L(v) − L(u0) = 0 to A(v) − f (�r) = 0.

The embedding parameter p monotonically increases from 0 to
1 as the trivial problem L(v) − L(u0) = 0 is continuously deformed
to the problem A(v) − f (�r) = 0

The basic idea of the homotopy method is that continuously
deform a simple problem easy to solve into the difficult problem to
be solved. The basic assumption is that the solution of Eq. (4a) or
(4b) can be written as a power series in p:

v = v0 + pv1 + p2v2 + · · · · · · · (7)

Setting p = 1 results in the approximate solution of Eq. (1):

u = lim
p→1

v = v0 + v1 + v2 + · · · · · · ·· (8)

This method has eliminated the limitations of the traditional
perturbation methods; it can take full advantages of the tradi-
tional perturbation techniques and can be used for solving various
strongly nonlinear equations.

3. The axial equation of ion motion in a nonlinear ion trap

A solution of Laplace’s equation in spherical polar coordinates
(�,ϑ,ϕ) for a system with axial symmetry can be written in the
following general form [26]:

	(�, ϑ, ϕ) = 	0

∞∑
n=0

An
�n

rn
0

Pn(cos ϑ) (9)

where 	0 = U + Vcos ˝t is the potential applied to the trap (U is a
direct current voltage and V is the zero to peak amplitude of the
sinusoidal RF voltage), Ans are arbitrary dimensionless coefficients,
Pn(cos ϑ) denotes a Legendre polynomial of order n, and r0 is a
scaling factor (i.e., the internal radius of the ring electrode).

When �nPn(cos ϑ) is expressed in cylindrical polar coordinates
(r,z) and the one higher order multipole, hexapole corresponding to
n = 3, along with the quadrupole component corresponding to n = 2
are taken into account, the time dependent potential distribution
inside the trap takes the form:

	(r, z, t) = A2

r2
0

V cos ˝t

[
2z2 − r2

2
+ f1

r0

(
2z3 − 3r2z

2

)]
(10)

where f1 = A3/A2. Here we have assumed the operation of the trap
along the au = 0 axis in the Mathieu stability plot, that is, the DC
component of 	0 is equal to 0. The coefficients A2 and A3 refer to the
weight of the quadrupole and hexapole superposition, respectively.

According to classical mechanics [27], the motion of an ion in
a rapidly oscillating field such as 	(r,z,t) (due to the largeness of
˝) can be averaged and transformed to the motion in an effective

potential, Ueff(r,z), related to 	(r,z,t) through the following relation:

Ueff(r, z) = e

2m

〈∣∣∣∣
∫

�∇	(r, z, t)dt

∣∣∣∣
2
〉

(11)
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Insertion of Eq. (10) for 	(r,z,t) in Eq. (11) and averaging with
espect to time gives the following relation for Ueff(r,z),

eff(r, z) = 1



ω2
0u

(
m

e

)[
r2 + 4z2 + f1

2

r2
0

(
9z4 + 9

4
r4

)
+ 12f1

r0
z3

]
(12)

here 
 = 2 for u = r (radial direction) and 
 = 8 for u = z (axial direc-
ion).

By ignoring the term proportional to f12 compared with the term
roportional to f1 (because f1 = A3/A2 is small in comparison to 1),
he final form of Ueff(r,z) reduces to the following form,

eff(r, z) = 1



ω2
0u

(
m

e

)[
r2 + 4z2 + 12f1

r0
z3

]
(13)

The classical equation of ion motion in the effective potential
eff(r,z), and with no excitation potential applied to the endcap
lectrodes is given by:

d2�r
dt2

+ e

m
�∇Ueff(r, z) = 0 (14)

here �r is the position vector of the ion. From the above equations
e get the equation of motion in the axial (z) direction as:

d2z

dt2
+ ω2

0zz + ˛′
2z2 = 0 (15)

here

0z = qz˝

2
√

2
(16)

z = 4eV

mr2
0 ˝2

(17)

′
2 = 9f1ω2

0z

2r0
(18)

In the resulted equation by introducing the dimensionless vari-
ble x through the relation x = z/r0, and omission of index z from
0z (for simplicity) we get the equation,

d2x

dt2
+ ω2

0x + ˛2x2 = 0 (19)

here ˛2 = (9/2)f1ω2
0.

There are several methods [19,28] that can be used for solution
f the nonlinear Eq. (19). In the next section of this article we have
sed the homotopy perturbation method for solving the nonlinear
ifferential equation of motion.

. Application of homotopy method for solution of the
quation of motion and the results

For solving the nonlinear equation ẍ + ω2
0x + ˛2x2 = 0 with ini-

ial conditions x(0) = A, and ẋ(0) = 0, we construct the following
omotopy:

¨ + ω2x + p[(ω2
0 − ω2)x + ˛2x2] = 0 p ∈ [0, 1] (20)

When p = 0, the equation becomes the linearized equation, ẍ +
2x = 0, and when p = 1, it turns out to be the original nonlinear
roblem. We assume that the periodic solution to Eq. (20) can be
ritten as a power series in p, similar to the power series in Eq. (7):

= x0 + px1 + p2x2 + · · · · · · · (21)
Substitution of this equation into Eq. (20), and collecting terms
f the same power of p, gives the following set of equations:

ẍ0 + ω2x0 = 0, x0(0) = A, ẋ0(0) = 0
ẍ1 + ω2x1 + (ω2

0 − ω2)x0 + ˛2x2
0 = 0, x1(0) = 0, ẋ1(0) = 0

(22)
s Spectrometry 296 (2010) 43–46 45

The first equation of this set can be solved easily, giving the
solution x0(t) = Acosωt.

Substitution of x0(t) into the second equation and after doing
some algebra, having no secular term, implies:

ω = ω0 (23)

This is the approximate amplitude independent secular fre-
quency in first order. For going to higher order approximation, the
parameter-expanding method (the modified Lindstedt–Poincare
method) [29] is applied. For this purpose, we construct the follow-
ing homotopy,

ẍ + ω2
0x + p˛2x2 = 0 (24)

Now, we expand the coefficient of the linear term (ω2
0) and the

solution (x(t)) into power series of p:

ω2
0 = ω2 + pω1 + p2ω2 + · · · · ·· (25)

x = x0 + px1 + p2x2 + · · · · ·· (26)

Substitution of these power series into equation (24), and col-
lecting terms of the same power of p, results in the following set of
equations:{

ẍ0 + ω2x0 = 0
ẍ1 + ω2x1 + ω1x0 + ˛2x2

0 = 0
ẍ2 + ω2x2 + ω1x1 + ω2x0 + 2˛2x0x1 = 0

(27)

The first equation of this set is easily solved and we get the solu-
tion x0(t) = Acosωt. Insertion of this solution in the second equation
of the set (27) and implication for no secular term in x1(t), gives the
result,

ω1 = 0 (28)

The second equation of the set is solved for this value of ω1
and the final solution for x1(t), along with the solution for x0(t)
are inserted in third equation of the set. No secular term for x2(t)
implies that:

ω2 = 5
6

˛2
2A2

ω2
(29)

Combining these results with p = 1 gives rise to the result:

ω2
0 = ω2 + ω1 + ω2 = ω2 + 5

6
˛2

2A2

ω2
(30)

By rearranging this equation, we get the following equation:

ω4 − ω2
0ω2 + 5

6
˛2

2A2 = 0 (31)

This equation can be easily solved for ω2 and the final result is:

ω =

√
ω2

0 +
√

ω4
0 − 10

3 ˛2
2A2

2
(32)

In this relation A is the maximum value for x and xmax can be
obtained by using the relation z0/r0 = 1/

√
2 for ion trap and insert-

ing z0 for z in equation x = z/r0. Insertion of the expressions for A and
˛2 in Eq. (32) gives the final result:

ω

ω0
=

√
1 +

√
1 − 135

4 f 2
1

2
(33)

The perturbed frequencies can be calculated through the rela-

tion (33) as a function of field aberration (parameter f1). It is clear
from the relation that ion secular frequency is independent of the
sign of the hexapole superposition.

The values of ω/ω0 for different values of f1 are given in
Table 1 and for comparison purposes the values of ω/ω0 in
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Table 1
Comparison of the calculated values of ω/ω0 in this paper with the values of the
Lindstedt–Poincare approximation and the exact values.

f1 Lindstedt–Poincare Homotopy method
(this paper)

Exact results

0.01 0.99958 0.99958 0.99957
0.05 0.98945 0.98945 0.98793
0.10 0.9578 0.95235 0.93919
0.11 0.94895 0.94052 0.92122
0.12 0.93925 0.92654 0.89820
0.13 0.92870 0.90979 0.86757
0.14 0.91731 0.88933 0.82342
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[
[
[
[
[
[
[
[
[
[
[
[

0.15 0.90508 0.86329 0.74569
0.155 0.8986 0.84703 0.65559
0.157 0.89601 0.83964 0.50997
0.1571 0.89588 0.83925 0.45955

indstedt–Poincare approximation which can be calculated [14] by
he relation:

ω

ω0
= 1 − 405f 2

1
96

(34)

re also given in the table.
For a nonlinear oscillator with only a quadraic term as a non-

inearity (˛2 /= 0), the exact values of frequencies are available in
he literature [15,16] and are given in terms of complete elliptic
ntegrals (relation No. (46) of Ref. [16]). Mathematica software has
een used for calculation of numerical values of elliptic integrals
nd finding the roots of cubic polynomial equations.

In Table 1, the exact values of secular frequencies for different
alues of f1 are compared with the results of this paper and the
esults of Lindstedt–Poincare approximation. As is seen in the table,
he results of this paper are closer to the exact values than those
f the Lindstedt–Poincare method. There is no bounded motion for
he values of f1 〉 0.1571 and the homotopy method has reasonable
olution for f1 values up to 0.172.
. Conclusion

In this paper we have derived the equation of ion motion in
xial direction of a nonlinear ion trap. The nonlinear ion trap is
enerated by superposition of weak multipole fields on the pure

[
[
[

[

s Spectrometry 296 (2010) 43–46

quadrupole field. Only hexapole field superposition is considered.
The computed axial equation of ion motion is a nonlinear equation
with quadratic nonlinearity. We have used the homotopy pertur-
bation method for solution of the resulted equation and calculation
of the axial secular frequencies of the ions in the trap. The results
of this paper are compared with the exact results and the results of
the Lindstedt–Poincare method.
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